Home JAX Tutorials

Open in Colab

Language: English | 中文

Language: English | 中文

Chex Exercises: Building Robust JAX & Flax NNX Applications

Welcome! This notebook contains exercises to help you practice using Chex with JAX and Flax NNX, based on the concepts covered in the lecture.

Goal: Solidify your understanding of how Chex enhances reliability and debuggability in JAX-based projects. Instructions:
  1. Read the problem description for each exercise.
  2. Fill in the TODO sections with your code.
  3. Run the cells to test your solutions.
  4. Compare your results with the expected outcomes or hints provided.

Let's get started!

# Run this cell first to install and import necessary libraries.
!pip install -q jax-ai-stack==2025.9.3

import jax
import jax.numpy as jnp
import chex
import flax
from flax import nnx
import functools # For functools.partial

# Helper to reset trace counter for assert_max_traces exercises
def reset_trace_counter():
    chex.clear_trace_counter()
    # For some JAX versions, a small trick might be needed to fully reset
    # internal JAX caches if you're re-running cells aggressively.
    # This is usually not needed for these exercises if cells are run in order.

print(f"JAX version: {jax.__version__}")
print(f"Chex version: {chex.__version__}")
print(f"Flax version: {flax.__version__}")
print(f"Running on: {jax.default_backend()}")

Section 1: Core Chex Assertions

Chex provides a suite of assertion functions to validate array properties. Let's practice with the most common ones.

Exercise 1.1: chex.assertshape and chex.asserttype

Complete the process_data function below.
  • Add assertions to check if input_array has a shape of (3, None)
(meaning 3 rows, any number of columns).
  • Add an assertion to check if input_array has a jnp.float32 dtype.
  • Add an assertion to check if output_array has a shape of (3, 1).
def process_data_v1(input_array: chex.Array) -> chex.Array:
  """Processes an array, asserting shapes and types."""
  # TODO: Assert input_array shape is (3, None)
  chex.assert_shape(input_array, <TODO>)

  # TODO: Assert input_array type is jnp.float32
  chex.assert_type(<TODO>)

  # Simulate some processing that reduces the last dimension to 1
  output_array = input_array[:, :1] * 2.0

  # TODO: Assert output_array shape is (3, 1)
  chex.assert_shape(output_array, (3, 1))

  return output_array

# Test cases
key = jax.random.PRNGKey(0)
valid_input = jax.random.normal(key, (3, 5), dtype=jnp.float32)
print("Testing with valid input...")
result = process_data_v1(valid_input)
print(f"Successfully processed valid input. Output shape: {result.shape}\n")

print("Testing with invalid shape input...")
invalid_shape_input = jax.random.normal(key, (4, 5), dtype=jnp.float32)
try:
  process_data_v1(invalid_shape_input)
except AssertionError as e:
  print(f"Caught expected error for invalid shape:\n{e}\n")

print("Testing with invalid type input...")
invalid_type_input = jnp.ones((3, 5), dtype=jnp.int32)
try:
  process_data_v1(invalid_type_input)
except AssertionError as e:
  print(f"Caught expected error for invalid type: {e}\n")

Exercise 1.1 Solution

def process_data_v1(input_array: chex.Array) -> chex.Array:
  """Processes an array, asserting shapes and types."""
  # TODO: Assert input_array shape is (3, None)
  chex.assert_shape(input_array, (3, None))

  # TODO: Assert input_array type is jnp.float32
  chex.assert_type(input_array, expected_types=jnp.float32)

  # Simulate some processing that reduces the last dimension to 1
  output_array = input_array[:, :1] * 2.0

  # TODO: Assert output_array shape is (3, 1)
  chex.assert_shape(output_array, (3, 1))

  return output_array

# Test cases
key = jax.random.PRNGKey(0)
valid_input = jax.random.normal(key, (3, 5), dtype=jnp.float32)
print("Testing with valid input...")
result = process_data_v1(valid_input)
print(f"Successfully processed valid input. Output shape: {result.shape}\n")

print("Testing with invalid shape input...")
invalid_shape_input = jax.random.normal(key, (4, 5), dtype=jnp.float32)
try:
  process_data_v1(invalid_shape_input)
except AssertionError as e:
  print(f"Caught expected error for invalid shape:\n{e}\n")

print("Testing with invalid type input...")
invalid_type_input = jnp.ones((3, 5), dtype=jnp.int32)
try:
  process_data_v1(invalid_type_input)
except AssertionError as e:
  print(f"Caught expected error for invalid type: {e}\n")

Exercise 1.2: chex.assertrank and chex.assertscalar

Complete the processdatav2 function.
  • Add an assertion to ensure matrix_input is a 2D array (rank 2).
  • Add an assertion to ensure scalar_input is a scalar.
  • Add an assertion to ensure the result is also a 2D array.
def process_data_v2(matrix_input: chex.Array, scalar_input: chex.Array) -> chex.Array:
  """Processes a matrix and a scalar."""
  # TODO: Assert matrix_input has rank 2
  chex.assert_rank(matrix_input, <TODO>)

  # TODO: Assert scalar_input is a scalar
  chex.assert_scalar(<TODO>)

  result = matrix_input * scalar_input + 1.0

  # TODO: Assert result has rank 2
  chex.assert_rank(result, <TODO>)
  return result

# Test cases
matrix = jnp.ones((3, 4))
scalar = 5.0
not_a_scalar = jnp.array([5.0])
not_a_matrix = jnp.ones((3,4,1))

print("Testing with valid rank/scalar inputs...")
try:
    res_valid = process_data_v2(matrix, scalar)
    print(f"Successfully processed valid rank/scalar. Result shape: {res_valid.shape}\n")
except AssertionError as e:
    print(f"Caught unexpected error for valid rank/scalar:\n{e}\n")

print("Testing with invalid rank input...")
try:
  process_data_v2(not_a_matrix, scalar)
  print(f"Successfully processed invalid rank. Result shape: {res_valid.shape}\n")
except AssertionError as e:
  print(f"Caught expected error for invalid rank:\n{e}\n")

print("Testing with non-scalar input...")
try:
  process_data_v2(matrix, not_a_scalar)
  print(f"Successfully processed non-scalar. Result shape: {res_valid.shape}\n")
except AssertionError as e:
  print(f"Caught expected error for non-scalar:\n{e}\n")

Exercise 1.2 Solution

def process_data_v2(matrix_input: chex.Array, scalar_input: chex.Array) -> chex.Array:
  """Processes a matrix and a scalar."""
  # TODO: Assert matrix_input has rank 2
  chex.assert_rank(matrix_input, expected_ranks=2)

  # TODO: Assert scalar_input is a scalar
  chex.assert_scalar(scalar_input)

  result = matrix_input * scalar_input + 1.0

  # TODO: Assert result has rank 2
  chex.assert_rank(result, expected_ranks=2)
  return result

# Test cases
matrix = jnp.ones((3, 4))
scalar = 5.0
not_a_scalar = jnp.array([5.0])
not_a_matrix = jnp.ones((3,4,1))

print("Testing with valid rank/scalar inputs...")
try:
    res_valid = process_data_v2(matrix, scalar)
    print(f"Successfully processed valid rank/scalar. Result shape: {res_valid.shape}\n")
except AssertionError as e:
    print(f"Caught unexpected error for valid rank/scalar:\n{e}\n")

print("Testing with invalid rank input...")
try:
  process_data_v2(not_a_matrix, scalar)
  print(f"Successfully processed invalid rank. Result shape: {res_valid.shape}\n")
except AssertionError as e:
  print(f"Caught expected error for invalid rank:\n{e}\n")

print("Testing with non-scalar input...")
try:
  process_data_v2(matrix, not_a_scalar)
  print(f"Successfully processed non-scalar. Result shape: {res_valid.shape}\n")
except AssertionError as e:
  print(f"Caught expected error for non-scalar:\n{e}\n")

Exercise 1.3: PyTree Assertions (asserttreesallclose, asserttreeallfinite)

PyTrees (nested structures of arrays, like model parameters) are common in JAX. Chex provides assertions for them.
def process_pytree(tree1, tree2):
  """
  Checks if two PyTrees are close and if the first tree is finite.
  Returns a new tree where elements are tree1 + tree2.
  """
  # TODO: Assert tree1 and tree2 are (close to) equal. Use a small tolerance.
  chex.assert_trees_all_close(<TODO> rtol=1e-5, atol=1e-8)

  # TODO: Assert all elements in tree1 are finite (not NaN or Inf).
  chex.assert_tree_all_finite(<TODO>)

  # Perform some operation
  return jax.tree_util.tree_map(lambda x, y: x + y, tree1, tree2)

# Test cases
tree_a = {'params': {'w': jnp.array([1.0, 2.0]), 'b': jnp.array(0.5)}}
tree_b_close = {'params': {'w': jnp.array([1.000001, 2.000001]), 'b': jnp.array(0.500001)}}
tree_c_not_close = {'params': {'w': jnp.array([1.1, 2.1]), 'b': jnp.array(0.6)}}
tree_d_nan = {'params': {'w': jnp.array([1.0, jnp.nan]), 'b': jnp.array(0.5)}}

print("Testing with close and finite PyTrees...")
result_valid = process_pytree(tree_a, tree_b_close)
print("Successfully processed valid PyTrees.\n")

print("Testing with non-close PyTrees...")
try:
  process_pytree(tree_a, tree_c_not_close)
except AssertionError as e:
  print(f"Caught expected error for non-close trees:\n\n{e}\n")

print("Testing with non-finite PyTree...")
try:
  process_pytree(tree_d_nan, tree_b_close) # tree_d_nan will be checked for finiteness
except AssertionError as e:
  print(f"Caught expected error for non-finite tree:\n\n{e}\n")

Exercise 1.3 Solution

def process_pytree(tree1, tree2):
  """
  Checks if two PyTrees are close and if the first tree is finite.
  Returns a new tree where elements are tree1 + tree2.
  """
  # TODO: Assert tree1 and tree2 are (close to) equal. Use a small tolerance.
  chex.assert_trees_all_close(tree1, tree2, rtol=1e-5, atol=1e-8)

  # TODO: Assert all elements in tree1 are finite (not NaN or Inf).
  chex.assert_tree_all_finite(tree1)

  # Perform some operation
  return jax.tree_util.tree_map(lambda x, y: x + y, tree1, tree2)

# Test cases
tree_a = {'params': {'w': jnp.array([1.0, 2.0]), 'b': jnp.array(0.5)}}
tree_b_close = {'params': {'w': jnp.array([1.000001, 2.000001]), 'b': jnp.array(0.500001)}}
tree_c_not_close = {'params': {'w': jnp.array([1.1, 2.1]), 'b': jnp.array(0.6)}}
tree_d_nan = {'params': {'w': jnp.array([1.0, jnp.nan]), 'b': jnp.array(0.5)}}

print("Testing with close and finite PyTrees...")
result_valid = process_pytree(tree_a, tree_b_close)
print("Successfully processed valid PyTrees.\n")

print("Testing with non-close PyTrees...")
try:
  process_pytree(tree_a, tree_c_not_close)
except AssertionError as e:
  print(f"Caught expected error for non-close trees:\n\n{e}\n")

print("Testing with non-finite PyTree...")
try:
  process_pytree(tree_d_nan, tree_b_close) # tree_d_nan will be checked for finiteness
except AssertionError as e:
  print(f"Caught expected error for non-finite tree:\n\n{e}\n")

Section 2: Chex Assertions with JAX Transformations

A key strength of Chex is that its assertions work correctly inside JAX transformations like jax.jit and jax.vmap.

Exercise 2.1: Assertions inside @jax.jit

  • Take the processdatav1 function from Exercise 1.1.
  • JIT-compile it and verify that the Chex assertions still work as expected.
@jax.jit
def process_data_jitted(input_array: chex.Array) -> chex.Array:
  """JIT-compiled version of process_data_v1 with its Chex assertions."""
  # (Assertions are inside process_data_v1, which we'll effectively re-use here)
  # For clarity, let's re-define it with assertions directly here.
  chex.assert_shape(input_array, (3, None))
  chex.assert_type(input_array, jnp.float32)
  output_array = input_array[:, :1] * 2.0
  chex.assert_shape(output_array, (3, 1))
  return output_array

# Test cases for JIT version
key = jax.random.PRNGKey(1) # Use a different key for potentially different values
valid_input_jit = jax.random.normal(key, (3, 5), dtype=jnp.float32)
print("Testing JITted function with valid input...")

# First call will compile
result_jit = process_data_jitted(<TODO>)
print(f"Successfully processed JITted valid input. Output shape: {result_jit.shape}")

# Second call uses cached compilation
result_jit_cached = process_data_jitted(<TODO> * 2)
print(f"Successfully processed JITted valid input (cached). Output shape: {result_jit_cached.shape}\n")

print("Testing JITted function with invalid shape input...")
invalid_shape_input_jit = jax.random.normal(key, (4, 5), dtype=jnp.float32)
try:
  process_data_jitted(<TODO>)
except AssertionError as e:
  print(f"Caught expected JITted error for invalid shape:\n\n{e}\n")

Exercise 2.1 Solution

@jax.jit
def process_data_jitted(input_array: chex.Array) -> chex.Array:
  """JIT-compiled version of process_data_v1 with its Chex assertions."""
  # (Assertions are inside process_data_v1, which we'll effectively re-use here)
  # For clarity, let's re-define it with assertions directly here.
  chex.assert_shape(input_array, (3, None))
  chex.assert_type(input_array, jnp.float32)
  output_array = input_array[:, :1] * 2.0
  chex.assert_shape(output_array, (3, 1))
  return output_array

# Test cases for JIT version
key = jax.random.PRNGKey(1) # Use a different key for potentially different values
valid_input_jit = jax.random.normal(key, (3, 5), dtype=jnp.float32)
print("Testing JITted function with valid input...")

# First call will compile
result_jit = process_data_jitted(valid_input_jit)
print(f"Successfully processed JITted valid input. Output shape: {result_jit.shape}")

# Second call uses cached compilation
result_jit_cached = process_data_jitted(valid_input_jit * 2)
print(f"Successfully processed JITted valid input (cached). Output shape: {result_jit_cached.shape}\n")

print("Testing JITted function with invalid shape input...")
invalid_shape_input_jit = jax.random.normal(key, (4, 5), dtype=jnp.float32)
try:
  process_data_jitted(invalid_shape_input_jit)
except AssertionError as e:
  print(f"Caught expected JITted error for invalid shape:\n\n{e}\n")
Observation:

Chex assertions work seamlessly within JITted functions, catching errors based on the concrete values passed during runtime, even though the checks are defined within the compiled code.

---

Exercise 2.2: Multi-Level Validation with @jax.vmap

We want to process a batch of items. Each item is a 1D array of shape (10,).

  1. Define processsingleitem_vmap that processes one item.
- Inside this function, assert the item has shape (10,). - The function should double the item's values. - Assert the result (output of processsingleitem_vmap) also has shape (10,).
  1. Use jax.vmap to create process_batch.
  2. Before calling processbatch, assert the batchinput has shape (BATCH_SIZE, 10).
  3. After calling processbatch, assert the batchoutput has shape (BATCH_SIZE, 10).
BATCH_SIZE = 5
ITEM_SIZE = 10

def process_single_item_vmap(item: chex.Array) -> chex.Array:
  """Processes a single item, asserting its shape."""
  # TODO: Assert shape of a SINGLE item is (ITEM_SIZE,)
  chex.assert_shape(item, <TODO>)
  result = item * 2.0
  # TODO: Assert shape of single item output is (ITEM_SIZE,)
  chex.assert_shape(result, <TODO>)
  return result

# TODO: Vectorize the process_single_item_vmap function using jax.vmap
process_batch = jax.vmap(<TODO>, in_axes=0, out_axes=0)

# Test cases
key = jax.random.PRNGKey(2)
valid_batch_input = jax.random.normal(key, (BATCH_SIZE, ITEM_SIZE))
invalid_batch_input_item_shape = jax.random.normal(key, (BATCH_SIZE, ITEM_SIZE + 1))

print("Testing vmap with valid batch input...")
# TODO: Assert shape of the full BATCHED input BEFORE vmap
chex.assert_shape(valid_batch_input, <TODO>)

batch_output = process_batch(valid_batch_input)

# TODO: Assert shape of the full BATCHED output AFTER vmap
chex.assert_shape(batch_output, <TODO>)
print(f"Vmap assertion passed. Output shape: {batch_output.shape}\n")

print("Testing vmap with invalid item shape in batch (error from inside vmap)...")
try:
  # This will fail inside the vmapped function 'process_single_item_vmap'
  process_batch(invalid_batch_input_item_shape)
except AssertionError as e:
  print(f"Caught expected vmap error (from inner function):\n{e}\n")

print("Testing vmap with invalid batch shape (error from outer assertion)...")
invalid_batch_input_outer_shape = jax.random.normal(key, (BATCH_SIZE + 1, ITEM_SIZE))
try:
  # This will fail the assertion *before* calling process_batch
  chex.assert_shape(invalid_batch_input_outer_shape, (BATCH_SIZE, ITEM_SIZE)) # This line will fail
  process_batch(invalid_batch_input_outer_shape)
except AssertionError as e:
  print(f"Caught expected vmap error (from outer assertion):\n{e}\n")

Exercise 2.2 Solution

BATCH_SIZE = 5
ITEM_SIZE = 10

def process_single_item_vmap(item: chex.Array) -> chex.Array:
  """Processes a single item, asserting its shape."""
  # TODO: Assert shape of a SINGLE item is (ITEM_SIZE,)
  chex.assert_shape(item, (ITEM_SIZE,))
  result = item * 2.0
  # TODO: Assert shape of single item output is (ITEM_SIZE,)
  chex.assert_shape(result, (ITEM_SIZE,))
  return result

# TODO: Vectorize the function using jax.vmap
process_batch = jax.vmap(process_single_item_vmap, in_axes=0, out_axes=0)

# Test cases
key = jax.random.PRNGKey(2)
valid_batch_input = jax.random.normal(key, (BATCH_SIZE, ITEM_SIZE))
invalid_batch_input_item_shape = jax.random.normal(key, (BATCH_SIZE, ITEM_SIZE + 1))

print("Testing vmap with valid batch input...")
# TODO: Assert shape of the full BATCHED input BEFORE vmap
chex.assert_shape(valid_batch_input, (BATCH_SIZE, ITEM_SIZE))

batch_output = process_batch(valid_batch_input)

# TODO: Assert shape of the full BATCHED output AFTER vmap
chex.assert_shape(batch_output, (BATCH_SIZE, ITEM_SIZE))
print(f"Vmap assertion passed. Output shape: {batch_output.shape}\n")

print("Testing vmap with invalid item shape in batch (error from inside vmap)...")
try:
  # This will fail inside the vmapped function 'process_single_item_vmap'
  process_batch(invalid_batch_input_item_shape)
except AssertionError as e:
  print(f"Caught expected vmap error (from inner function):\n{e}\n")

print("Testing vmap with invalid batch shape (error from outer assertion)...")
invalid_batch_input_outer_shape = jax.random.normal(key, (BATCH_SIZE + 1, ITEM_SIZE))
try:
  # This will fail the assertion *before* calling process_batch
  chex.assert_shape(invalid_batch_input_outer_shape, (BATCH_SIZE, ITEM_SIZE)) # This line will fail
  process_batch(invalid_batch_input_outer_shape)
except AssertionError as e:
  print(f"Caught expected vmap error (from outer assertion):\n{e}\n")

Section 3: Chex with Flax NNX

Neural networks are complex, making validation crucial. Chex integrates naturally into Flax NNX Modules, typically within the call method.

Exercise 3.1: Input/Output Validation in an NNX Module

Complete the SimpleMLP module:
  • In call, validate the input x:
- Must be 2D ([batch, features]). - The feature dimension (axis 1) must match self.linear1.in_features. - Type must be jnp.float32.
  • In call, validate the output x before returning:
- Must be 2D. - The feature dimension (axis 1) must match self.linear2.out_features.
class SimpleMLP(nnx.Module):
  def __init__(self, din: int, dmid: int, dout: int, *, rngs: nnx.Rngs):
    self.linear1 = nnx.Linear(din, dmid, rngs=rngs)
    self.linear2 = nnx.Linear(dmid, dout, rngs=rngs)

  def __call__(self, x: chex.Array) -> chex.Array:
    # TODO: Validate input x
    # - Must be 2D ([batch, features])
    chex.assert_rank(<TODO>)
    # - Feature dimension (axis 1) must match self.linear1.in_features
    chex.assert_axis_dimension(x, 1, <TODO>)
    # - Type must be jnp.float32
    chex.assert_type(x, <TODO>)

    # Forward pass
    x = self.linear1(x)
    x = nnx.relu(x)
    x = self.linear2(x)

    # TODO: Validate output x before returning
    # - Must be 2D
    chex.assert_rank(<TODO>)
    # - Feature dimension (axis 1) must match self.linear2.out_features
    chex.assert_axis_dimension(x, 1, self.linear2.out_features)

    return x

# Test cases for SimpleMLP
key_nnx = nnx.Rngs(params=jax.random.key(0)) # NNX Rngs for stateful operations
din, dmid, dout = 10, 20, 5
batch_size_nnx = 4

model = SimpleMLP(din, dmid, dout, rngs=key_nnx)

print("Testing NNX Module with valid input:")
x_valid_nnx = jnp.ones((batch_size_nnx, din), dtype=jnp.float32)
output_nnx = model(x_valid_nnx)
print(f"NNX I/O Check passed. Output shape: {output_nnx.shape}\n")


print("Testing NNX Module with invalid input rank:")
x_invalid_rank_nnx = jnp.ones((batch_size_nnx, din, 1), dtype=jnp.float32)
try:
  model(x_invalid_rank_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input rank):\n{e}\n")

print("Testing NNX Module with invalid input feature dimension:")
x_invalid_feat_nnx = jnp.ones((batch_size_nnx, din + 1), dtype=jnp.float32)
try:
  model(x_invalid_feat_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input features):\n{e}\n")

print("Testing NNX Module with invalid input type:")
x_invalid_type_nnx = jnp.ones((batch_size_nnx, din), dtype=jnp.int32)
try:
  model(x_invalid_type_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input type):\n{e}\n")

Exercise 3.1 Solution

class SimpleMLP(nnx.Module):
  def __init__(self, din: int, dmid: int, dout: int, *, rngs: nnx.Rngs):
    self.linear1 = nnx.Linear(din, dmid, rngs=rngs)
    self.linear2 = nnx.Linear(dmid, dout, rngs=rngs)

  def __call__(self, x: chex.Array) -> chex.Array:
    # TODO: Validate input x
    # - Must be 2D ([batch, features])
    chex.assert_rank(x, 2)
    # - Feature dimension (axis 1) must match self.linear1.in_features
    chex.assert_axis_dimension(x, 1, self.linear1.in_features)
    # - Type must be jnp.float32
    chex.assert_type(x, jnp.float32)

    # Forward pass
    x = self.linear1(x)
    x = nnx.relu(x)
    x = self.linear2(x)

    # TODO: Validate output x before returning
    # - Must be 2D
    chex.assert_rank(x, 2)
    # - Feature dimension (axis 1) must match self.linear2.out_features
    chex.assert_axis_dimension(x, 1, self.linear2.out_features)

    return x

# Test cases for SimpleMLP
key_nnx = nnx.Rngs(params=jax.random.key(0)) # NNX Rngs for stateful operations
din, dmid, dout = 10, 20, 5
batch_size_nnx = 4

model = SimpleMLP(din, dmid, dout, rngs=key_nnx)

print("Testing NNX Module with valid input:")
x_valid_nnx = jnp.ones((batch_size_nnx, din), dtype=jnp.float32)
output_nnx = model(x_valid_nnx)
print(f"NNX I/O Check passed. Output shape: {output_nnx.shape}\n")


print("Testing NNX Module with invalid input rank:")
x_invalid_rank_nnx = jnp.ones((batch_size_nnx, din, 1), dtype=jnp.float32)
try:
  model(x_invalid_rank_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input rank):\n{e}\n")

print("Testing NNX Module with invalid input feature dimension:")
x_invalid_feat_nnx = jnp.ones((batch_size_nnx, din + 1), dtype=jnp.float32)
try:
  model(x_invalid_feat_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input features):\n{e}\n")

print("Testing NNX Module with invalid input type:")
x_invalid_type_nnx = jnp.ones((batch_size_nnx, din), dtype=jnp.int32)
try:
  model(x_invalid_type_nnx)
except AssertionError as e:
  print(f"Caught expected NNX error (invalid input type):\n{e}\n")
Self-reflection:

How would these assertions help you catch bugs early when composing multiple layers or changing model configurations? They act as contracts between layers and for the model's external API.

---

🏆 Congratulations!

You've completed the Chex exercises. You should now have a better understanding of:
  • Using core Chex assertions for shapes, types, ranks, and PyTrees.
  • How Chex assertions behave within jax.jit and jax.vmap.
  • The purpose and usage of @chex.chexify (and its caveats).
  • Detecting recompilation issues with @chex.assertmaxtraces.
  • Integrating Chex assertions into Flax NNX modules for robust model development.
  • Using Chex consistently can significantly improve the reliability and maintainability of your JAX projects.

    Further Exploration (Optional):
    • Explore using chex.chexify outside of a Colab environment.
    • Explore other Chex assertions not covered here (e.g., chex.assertdevicesavailable).
    • Look into Chex testing utilities like @chex.variants if you write comprehensive test suites.
    • Consider when and where to add Chex assertions in a typical training loop.